NEW PERSONAL PROTECTIVE EQUIPMENT REGULATION 2016/425

CATEGORISATION
Category I Minimal risks
e.g., gardening gloves

Category II Risks other than those listed in Categories I and III
e.g., general handling gloves which require cut, puncture, and abrasion protection

Category III Risks that may cause very serious consequences such as death or irreversible damage to health e.g., chmicals, biological agents, electric shock and live working

EUROPEAN STANDARDS AND CE MARKING

(i) EN 420: 2003+A1:2009

EN 388: 2016
Mechanical protection

Performance levels	1	2	3	4
a Burning behaviour (ffere flame and affer glowime)	$\begin{gathered} <20 \text { secs } \\ \text { no requirement } \end{gathered}$	$\begin{gathered} \quad \begin{array}{c} <10 \text { secs } \\ <120 \text { secs } \end{array} \end{gathered}$	$\begin{gathered} <3 \text { secs } \\ <25 \text { secs } \end{gathered}$	$\begin{aligned} & <2 \text { secs } \\ & 55 \text { secs } \end{aligned}$
b Contact heat (contact temperature and dhreshold time)	$\begin{gathered} 100^{\circ} \mathrm{c} \\ > \\ \hline \end{gathered}$	$\begin{gathered} 250^{\circ} \mathrm{c} \\ > \\ \hline \end{gathered} 15 \text { sess }$	$\begin{gathered} 350^{\circ} \mathrm{C} \\ >15 \text { secs } \\ \hline \end{gathered}$	$\begin{aligned} & 500 \mathrm{c} \\ & \ggg 15 \mathrm{secs} \end{aligned}$
c Convective heat (heot tronser delay)	>4 secs	> 7 secs	>10 secs	>18 secs
d Radiant heat (heat transere delay)	>7 secs	>20 secs	>50 secs	$>95 \mathrm{secs}$
e Small drops molten metal (number of drops)	>10	>15	> 25	> 35
f Large quantily molten metal (mass)	30 g	60 g	120 g	200 g

(\%) EN 511:2006
Cold protection

Pefrommence levels	0	1	2	3	4
a Convective cold Convective Thermal insulation ITR in $\mathrm{m} 2 .{ }^{\circ} \mathrm{C} / \mathrm{W}$	$I_{\text {ir }}<0,10$	$0,10 \leq I_{\text {R }}<0,15$	$0,15 \leq 1{ }_{\text {IR }}<0,22$	$0,22 \leq 1{ }_{\text {IR }}<0,30$	0,30 $1_{1 / \mathrm{R}}$
b Contact cold Thermal resistance R in $\mathrm{m} 2 .{ }^{\circ} \mathrm{C} / \mathrm{W}$	R<0,025	$0,025 \leq R<0,050$	$0,050 \leq R<0,100$	$0,100 \leq R<0,150$	$0,050 \leq R$
c Convective heat (heat transer delay)	FAll	pass			

[i] This pictgram indicates that the user has to consult the 'instructions for use'.

ANSI / ISEA 105-2016
CUT PROTECTION CLASSIFICATION
The American National Standards Institute (ANSI) released a new edition of the ANSI/ISEA 105 standard in March 2016. The changes include the classification levels and the method for testing gloves.
Classification Levels
The new ANSI standard is now divided into nine different protection
levels on a progressive scale, offering more detailed indication on
cut-resistant gloves.

The old standard measured the weight in grams for a blade to cut material with either a Cut Protection Performance Tester (CPPT) or a Tomodynamometer Test Machine(TDM). The new standard allows only one type of machine, TDM-100, to be used.

Understanding ASTM F2992-15 Test Methods
The sample is cut by a straightedge blade, under load, that moves along a straight path.
The sample is cut five times each at three different loads with a new blade for each cut and the data is used to determine the required load to cut through the sample at a specified reference difference
equated to a cut level.

